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Abstract

The Darcy model with the Boussinesq approximation is used to study natural convection in a porous medium saturated by a binary fluid. The
geometry considered is a square cavity whose portion of the bottom surface is isothermally heated, the upper surface is cooled at a constant
temperature and all other surface are adiabatic. The solutal buoyancy forces are assumed to be induced by the imposition of uniform concentration
on the upper and lower boundaries. The governing parameters for the problem are the thermal Rayleigh number, RT , the Lewis number, Le,
the buoyancy ratio, ϕ, the dimensionless length of the bottom plate, BT , the aspect ratio of the cavity A, the normalized porosity of the porous
medium, ε, and the relative position of the heating element with respect to the vertical centerline of the cavity, δT . Two main convective modes are
studied, namely single and double-cell convection, and their features are described. Also the possible existence of tricellular flows is demonstrated.
Maximum streamfunction and global Nusselt and Sherwood number are presented as functions of the external parameters. The existence of up to
three steady-state solutions for a given set of the governing parameters is demonstrated.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Natural convection in porous media saturated by a bi-
nary mixture is of importance in many natural and industrial
problems. Such applications include ground water pollution,
geothermal systems, crude oil production, storage of energy,
and so on. A comprehensive review of the natural convec-
tion due to combined thermal and solutal driving forces was
conducted by Ostrach [1], Viskanta et al. [2] and Nield and Be-
jan [3].

Much of the early published works regarding the problem
of combined heat and mass transfer concerns the problem of
the onset of convection in a horizontal porous layer heated and
salted from below [4–8]. On the basis of the linear stability
theory, the onset of convection of stationary and oscillatory
convection was derived by these authors for various thermal
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and solutal boundary conditions. A few studies have also been
reported concerning the regime of finite amplitude within a
porous medium subjected to vertical gradient of heat and solute.
Trevisan and Bejan [9] studied numerically and theoretically
the mass transfer resulting from high convection in a porous
medium heated from below. Their results indicate the existence
of different scaling laws for the dependence of the Nusselt num-
ber versus the Rayleigh and Lewis numbers. Thermo-solutal
bifurcation phenomena in porous enclosures subject to vertical
temperature and concentration gradients has been studied an-
alytically and numerically by Mamou and Vasseur [10]. The
onset and development of convection was investigated using
both linear and nonlinear perturbation theories. The existence of
multiple solutions and the occurrence of travelling waves was
demonstrated. The onset of convection in a horizontal porous
layer has been investigated by Sovran et al. [11]. The Soret ef-
fect, for which species gradients are not due to the imposition of
solutal boundary conditions but result rather from temperature
gradients, was considered by these authors. Recently, double-
diffusive and Soret-induced convection in a shallow horizontal
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Nomenclature

A aspect ratio of the cavity, (L′/H ′)
BT dimensionless length of heat source, (d ′

T /H ′)
C mass fraction
D mass diffusivity of species . . . . . . . . . . . . . . . . m2/s
g gravitational acceleration . . . . . . . . . . . . . . . . . m/s2

H ′ side of the square cavity . . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . . . . . W/(m K)
K permeability of saturated porous medium . . . . . m2

Le Lewis number, (α/D)

N mass fraction
N0 reference mass fraction
�N characteristic mass fraction difference, (NH − NC)

Nu Nusselt number, Eq. (13)
RT thermal Rayleigh number, (gβ ′

T K�T ′H ′/να)

S normalized mass fraction, N/�N

Sh Sherwood number, Eq. (14)
t dimensionless time, t ′α/H ′2

T dimensionless temperature, (T ′ − T ′
C)/�T ′

�T ′ characteristic temperature difference, (T ′
H − T ′

C)

u dimensionless velocity in x direction, (u′H ′/α)

v dimensionless velocity in y direction, (v′H ′/α)

x dimensionless coordinate axis, (x′/H ′)
y dimensionless coordinate axis, (y′/H ′)

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2/s
βN concentration expansion coefficient
β ′

T thermal expansion coefficient . . . . . . . . . . . . . . K−1

ε normalized porosity of the porous medium, φ/σ

δT dimensionless position of heat source, δ′
T /H ′

ν kinematic viscosity of fluid. . . . . . . . . . . . . . . . m2/s
ϕ buoyancy ratio, (βN�N/β ′

T �T ′)
ρ density of fluid . . . . . . . . . . . . . . . . . . . . . . . . . kg/m2

(ρC)f heat capacity of the fluid . . . . . . . . . . . . . . . . . . W/K
(ρC)p heat capacity of the saturated porous

medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/K
σ heat capacity ratio, (ρC)p/(ρC)f
φ porosity of the porous medium
Ψ dimensionless streamfunction, Ψ ′/α
Subscript

0 reference state

Superscript
′ refers to dimensional variable
layer subject to vertical gradients of temperature and solute has
been studied by Bahloul et al. [12]. The thresholds for finite-
amplitude, oscillatory and monotonic convection instabilities
were determined in terms of the governing parameters. Numer-
ical solutions are presented for a wide range of the governing
parameters.

A literature review shows that relatively little work is avail-
able on the case of natural convection in a porous cavity, driven
by localized heating from below. The theoretical work, for this
configuration has been pioneered by Elder [13,14]. Numerical
results were reported by El-Khatib and Prasad [15] for the case
of a square cavity, in the presence of stable linear gradients.
Detailed flow and temperature field solutions are discussed for
various values of thermal stratification ratio. Multiple steady
states in a confined porous medium, with localized heating from
below have been reported numerically by Robillard et al. [16].
For a square enclosure unicellular and bicellular symmetrical
circulations have been studied for various sizes and positions of
the heated element.

All the above studies are concerned with the case of single
diffusive convection in a porous cavity with discrete heat source
from below. The problem of double diffusive natural convection
within a porous cavity with discrete heat and mass sources has
been considerably less studied, despite its width range of appli-
cations in many engineering fields. Bourich et al. [17] studied
numerically the existence of multiple solutions in a porous en-
closure partially heated from below and differentially salted.
It was demonstrated that the multiplicity of solution obtained
in pure thermal convection vanishes in the presence of hori-
zontal solutal gradients when critical conditions, depending on
the Rayleigh and Lewis number, are reached. The problem of
double diffusive natural convection within a vertical porous en-
closure with localized heating and salting element from one
side, subjected to constant heat and mass fluxes, has been stud-
ied numerically by Di Liu et al. [18]. The same problem was
reconsidered by Zhao et al. [19] for the case when the local-
ized element is maintained at constant temperature and con-
centration. A large range of buoyancy ratios was considered by
these authors in order to illustrate the flow structure transitions
and flow reversals. The existence of multiple steady flows in
confined gaseous double diffusion with discrete thermosolutale
sources has been investigated by Zhao et al. [20]. The same
authors [21] also considered the double diffusive natural con-
vection induced by discrete thermosolutale sources in a porous
enclosure.

The present paper investigates numerically double diffusive
natural convection within a porous enclosure with localized
heating and salting from below. The paper is organized as fol-
lows. First, the physical model and mathematical formulation
of the problem is presented. Then, some relevant details of
the computational method utilized to solve the full governing
equations are presented. Finally, the results from the numerical
computations are discussed and conclusions are drawn.

2. Mathematical formulation

Consider a square cavity of side H ′ filled with an isotropic
porous medium saturated by a binary mixture (see Fig. 1).
All the boundaries are impermeable, the vertical walls are in-
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Fig. 1. Geometry and boundary conditions of the problem.

sulated, and the top horizontal wall is kept at uniform tem-
perature T ′

C and concentration NC . The bottom wall is main-
tained at uniform concentration NH (> NC) while an element
of length d ′

T is maintained at a temperature T ′
H (> T ′

C), the rest
of the horizontal boundary being insulated. The distance be-
tween the center of the heating element and the vertical center
line of the cavity is δ′

T . The porous medium is considered to be
homogeneous and isotropic and in local thermal and composi-
tional equilibrium with the fluid. The binary mixture is assumed
to be Newtonian and to satisfy the Boussinesq approximation.
The density variation with temperature and concentration is
described by the state equation ρ = ρ0[1 − β ′

T (T ′ − T ′
0) −

βN(N − N0)] where ρ0 is the fluid mixture density at temper-
ature T ′ = T ′

0 and mass fraction N = N0 and β ′
T and βN are

thermal and concentration expansion coefficients, respectively.
The subscript 0 refers to a reference state.

The phenomenological equations relating the fluxes of heat
�Q′ and matter �J ′ to the thermal and solute gradients present in

a binary fluid mixture are given by [22]:

�Q′ = −k∇T ′

�J ′ = −ρD∇N (1)

where k and D are the thermal conductivity and the mass dif-
fusivity of species through the fluid saturated porous medium.
In the above equations the interactions between the thermal and
concentration gradients, known as the Soret and Dufour effects,
are neglected.

The equations expressing conservation of momentum, en-
ergy and species are given by

∇2Ψ ′ = −gKβ ′
T

ν

∂

∂x′

(
T ′ + βN

β ′
T

N

)
(2)

(ρC)p
∂T ′

∂t ′
+ (ρC)fV′ · ∇T ′ = k∇2T ′ (3)

φ
∂N + V′ · ∇N = D∇2N (4)

∂t ′
where V′ is the Darcy velocity, g the gravitational acceleration,
ν the kinematic viscosity, (ρC)p and (ρC)f are respectively the
heat capacity of the saturated porous medium and the fluid, φ

the porosity of the porous matrix, t ′ the time and Ψ ′ the stream-
function. As usual, u′ = ∂Ψ ′/∂y′ and v′ = −∂Ψ ′/∂x′, such that
the conservation of mass is satisfied.

The boundary conditions applied on the system are:

x′ = ±L′/2, Ψ ′ = 0, ∂T ′/∂x′ = ∂N/∂x′ = 0

y′ = H ′, Ψ ′ = 0, T ′ = T ′
C, N = NC

y′ = 0, Ψ ′ = 0, N = NH

on surface d ′
T : T ′ = T ′

H , everywhere else: ∂T ′/∂y′ = 0 (5)

The dimensionless variables (primed quantities are dimen-
sional) are defined as follows

(x, y) = (x′, y′)/H ′, (u, v) = (u′, v′)H ′/α
t = t ′α/H ′2, ε = φ/σ

T = (T ′ − T ′
C)/�T ′, S = (N − NC)/�N

Ψ = Ψ ′/α (6)

where �T ′ = (T ′
H − T ′

C),�N = (NH − NC) and σ = (ρC)p/

(ρC)f is the heat capacity ratio.
In terms of the above definitions, the dimensionless govern-

ing equations are given by

∇2Ψ = −RT

(
∂T

∂x
+ ϕ

∂S

∂x

)
(7)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= ∇2T (8)

ε
∂S

∂t
+ u

∂S

∂x
+ v

∂S

∂y
= 1

Le
∇2S (9)

The corresponding dimensionless boundary conditions are
given by

x = ±A/2, Ψ = 0, ∂T /∂x = ∂S/∂x = 0

y = 1, Ψ = 0, T = 0, S = 0

y = 0, Ψ = 0, S = 1

on surface BT : T = 1, everywhere else: ∂T /∂y = 0 (10)

In addition to the boundary conditions, it is also necessary
to specify some initial conditions at time t = 0. This is done by
using a “stirred” flow as the initial condition of the evolutive
problem; this is written as follows:

Ψ = Ψp sinmπx sinnπy (11)

where Ψp is the amplitude of the initial perturbation and m and
n are wave-numbers of the initial disturbance.

From the above equations it is seen that the present problem
is governed by the thermal Rayleigh number RT , the buoyancy
ratio ϕ, the Lewis number Le, the normalized porosity ε and
the cavity aspect ratio A, the dimensionless length of thermal
source BT and the position of thermal source δT . These param-
eters are given by
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Table 1
Dimensionless heat transfer QC for A = 1, δT = 0 and various values of BT

BT 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

QC 1.000 0.997 0.985 0.966 0.939 0.902 0.859 0.803 0.733

RT = gβ ′
T K�T ′H ′

αν
, ϕ = βN�N

β ′
T �T ′ , Le = α

D
, A = L′

H ′

ε = φ

σ
, BT = d ′

T

H ′ , δT = δ′
T

H ′ (12)

In the present study the intensity of the thermal and solutal
buoyancy forces are expressed in terms of the parameters RT

and ϕ. It is noted that for ϕ > 0 both the thermal and solutal
buoyancy forces are cooperative while for ϕ < 0 they are op-
posing each other.

The heat and mass transfer rates on the surfaces of heat and
mass sources are given by the Nusselt number Nu and Sher-
wood number Sh

Nu = 1

QC

A/2∫
−A/2

∂T

∂y

∣∣∣∣
y=1

dx (13)

Sh = 1

JC

A/2∫
−A/2

∂S

∂y

∣∣∣∣
y=1

dx (14)

where QC and JC are the pure diffusion dimensionless heat and
mass transfer, respectively.

In the present study the values of QC and JC , which depend
upon parameters A, BT , BN , δT and δN , were obtained from
the numerical code described in the following section, for the
condition RT = 0 (pure conduction). Table 1 illustrates typical
results obtained for QC in terms of the dimensionless length of
the heated element BT when δT = 0.

3. Numerical solution

The numerical solution of governing equations (7)–(9) with
specified boundary conditions equations (10), is obtained using
the SIMPLER algorithm (Patankar [23]). The control-volume
formulation used in the algorithm ensures continuity of the
convective and diffusive fluxes as well as overall momentum
energy and solute conservation. The discretized equations are
derived using the central differences for spatial derivatives and
backward differences for time derivatives. The governing equa-
tions are converted into a system of algebraic equations through
integration over each control volume. The algebraic equations
are solved by a line-by-line iterative method. The method
sweeps the domain of integration along the x and y-axes and
uses tri-diagonal matrix inversion to solve the resulting sys-
tem of equations. The streamfunction equation (7) is solved
by SOR (Successive Over-Relaxation) method. Starting from
given specified initial values of variables, the dimensionless
time step which yielded convergence for the majority of cases
was �t = 10−4. The iterative process, employed to find the
Table 2
Validation of the numerical code, for A = 1, Le = 100, ϕ = 0, in terms of Nu
and Sh

RT = 100 RT = 1000

Nu Sh Nu Sh

Goyeau et al. [26] 3.11 41.53 13.47 140.65
Zhao et al. [19] 3.09 42.84 13.45 145.96
Present work 3.10 43.15 13.69 142.75

streamfunction, temperature and concentration fields, was re-
peated until the following convergence criterion was satisfied∑

i

∑
j (Φ

new
i,j − Φold

i,j )∑
i

∑
j Φnew

i

� 10−6 (15)

where Φ stand for Ψ , T and S. The subscripts i and j denote
grid locations in the (x, y) plane. A further decrease of the con-
vergence criteria 10−6 does not cause any significant change
in the final results. Besides the usual control, the accuracy of
computations was controlled using energy and mass fraction
conservation within the system.

A nonuniform mesh structure was employed, the nodal point
being skewed in x- and y-direction to obtain a greater con-
centration of points near the solid boundaries. Numerical tests,
using various mesh sizes, were done for the same conditions
in order to determine the best compromise between accuracy
of the results and computer time. A mesh size of 81 × 81 was
adopted for most of the cases considered in this study. The accu-
racy of the code was checked, modifying the thermal and solutal
boundary conditions, to reproduce the results reported in the
literature for the case of double-diffusive convection within a
square cavity differentially heated and salted from the vertical
sides. Good agreement can be seen from Table 2 with a maxi-
mum deviation of about 3.75%

4. Results and discussion

The present problem is governed by nine parameters, namely
RT ,ϕ,Le,A, ε,BT ,BN, δT and δN . Because of the abundance
of parameters the study is limited to a square cavity (A = 1).
In the actual computations RT is set equal to 200, Le is fixed
at 10 and ε = 1. In most of the results presented here the size of
the heated element is maintained at BT = 0.4 and two different
positions are considered, namely δT = 0 and 0.15.

Typical numerical results are presented in Figs. 2(a)–(f) for
RT = 200 and ϕ = 0. Positive and negative streamlines Ψ cor-
respond to counterclockwise and clockwise circulations, re-
spectively. In all these graphs, the increments between adjacent
streamlines are �Ψ = (Ψmax − Ψmin)/10. Past studies on nat-
ural double-diffusive convection in a cavity fully heated and
salted from bottom have demonstrated the existence of multi-
ple solutions, for a given set of the governing parameters (see
for instance Mamou et al. [24]). This behaviour results from the
nonlinearity of the governing equations. When multiple steady
states are possible, the final steady state achieved is determined
by the initial conditions chosen to initiate the numerical pro-
cedure. For a classical Bénard situation, i.e. when the cavity
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(a)

(b)

Fig. 2. Steady-state streamlines for ϕ = 0, BT = 0.4 and (a) δT = 0, Ψmin =
−5.57, Ψmax = 5.57, (b) δT = 0.15, Ψmin = −4.40, Ψmax = 6.17, (c) δT = 0,
Ψmin = −4.40, Ψmax = 4.40, (d) δT = 0, Ψmin = 0, Ψmax = 8.65, (e) δT =
0.15, Ψmin = 0, Ψmax = 8.64, (f) δT = 0.15, Ψmin = −8.34, Ψmax = 0.

is fully heated by the bottom (BT = 1) the numerical results,
not presented here, indicate that above a critical Rayleigh num-
ber, the flow field consists in a single cell rotating indifferently
clockwise or counterclockwise. Thus, starting with the rest state
as initial values, the direction of rotation of the cell is not im-
posed by the physics of the problem but rather is induced by the
round-off errors generated in the numerical computation. How-
ever, starting with appropriate initial conditions, a flow pattern
indicating the existence of two counterrotating cells is also pos-
sible for the same set of governing parameters [16].

When the cavity is partially heated by the bottom both uni-
cellular and bicellular flow patterns are also possible. In the
present study, the convective motion will be referred to as nat-
ural flow whenever the fluid is ascendant above the heated el-
ement. On the other hand the convective pattern will be called
antinatural when the fluid is descendant above the heated ele-
ment. Fig. 2(a) illustrates the natural flow pattern obtained when
the heated segment is centrally located (δT = 0). Thus, start-
ing with the rest state as initial conditions, the numerical code
predicts the formation of two cells. The direction of the rota-
tion of the cells is imposed by the physics of the problem, the
fluid being ascendant above the heated element. This type of
flow, according to the above convection, is thus a natural flow.
When the heated element is moved (δT = 0.15), Fig. 2(b) indi-
cates that the same bicellular flow pattern is obtained. However,
as expected, the symmetry of the flow observed in Fig. 2(a),
is now destroyed. Antinatural flow patterns will be now dis-
cussed. Fig. 2(c) shows a bicellular flow pattern obtained in the
case of a centrally heated segment. It is noted that now the fluid
motion above the heated element is not ascendant but rather
moves down toward it. To obtain this type of flow it is neces-
sary to choose carefully the initial conditions, and in particular
the number of cells and their initial sense of rotation. This was
done by starting the initial conditions of the evolutive problem
with the arbitrary convective flow defined by Eq. (11). This con-
dition allows initiation of m convective rolls in the x direction
with alternating clockwise and counterclockwise rotation. Uni-
cellular flow patterns will be now considered. Fig. 2(d) shows
the case of a single cell flow over a centrally located heated seg-
ment. Naturally, due to the symmetry of the problem, the cell
can rotate indifferently in either direction. The sense of rota-
tion depends only on the initial flow circulation used to initiate
the numerical procedure. As the position of the heated element
is moved to the right it is observed from Fig. 2(e) that an anti-
clockwise unicellular natural convective cell is possible. On the
other hand, the clockwise circulation of Fig. 2(f) corresponds to
an antinatural flow. When both natural and antinatural flows are
possible, for a given set of parameters, the maximum strength
of convection Ψext is always associated with the natural flow.
This point is illustrated by Figs. 2(e) and 2(f), for unicellular
flow patterns and Figs. 2(a) and 2(c) for bicellular flow pat-
terns. Finally, it is noted that the existence of the natural and
antinatural, unicellular and bicellular, flow patterns depicted in
Figs. 2(a)–(f) depends strongly upon the governing parameters
of the problem. This point will be discussed below in more de-
tails.

Fig. 3(a) illustrates the effect of buoyancy ration ϕ on the
maximum and minimum streamfunction Ψmax and Ψmin, re-
spectively, in the case of a centrally located heated segment
(δT = 0). All the curves presented in this graph were obtained
starting the numerical solution with the flows already obtained
in Fig. 2, for a centrally located heated segment, as initial con-
ditions. Thus three branches corresponding to the natural and
antinatural bicellular flows, Figs. 2(a) and 2(c), respectively,
and the unicellular cell, Fig. 2(d) were obtained. For each curve,
upon increasing or decreasing ϕ and using the last numeri-
cal solution as initial conditions for the next value of ϕ, the
resulting curves were found to follow the hysteresis loops indi-
cated by the arrows. Starting with the bicellular natural solution,
Fig. 2(a), it is observed that the resulting branch exists for all
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(a)

(b)

Fig. 3. Effect of buoyancy ratio ϕ on (a) Ψext, (b) Nu, (c) Sh, for BT = 0.4 and δT = 0; P: 1 cell, 1: 2 natural cells, !: 2 antinatural cells.
the values of ϕ considered here. Upon increasing the value of ϕ

from zero to 1.43, the intensity of the flow is notably enhanced
since the thermal and solutal buoyancy forces are cooperative.
As a result, as depicted in Figs. 3(b) and 3(c), the heat and
mass transfer are also considerably promoted. The reverse situ-
ation is observed, upon decreasing the value of ϕ, an almost rest
state being reached (Nu → 1, Sh → 1) for values of ϕ � −0.83.
It is noted that the vertical density gradients, induced by the
lower salted boundary (BN = 1), are destabilizing for ϕ > 0,
but stabilizing for ϕ < 0. The upper (lower) natural unicellu-
lar anticlockwise (clockwise) circulation branch will be now
discussed. Starting from the condition ϕ = 0 it is found, that
upon increasing the value of ϕ, it is possible to maintain this
flow structure up to ϕ � 0.45. Above this value, the unicellu-
lar flow patterns branch transits towards the bicellular natural
flow pattern branch. Similarly, upon decreasing ϕ below 0, it is
found that the critical buoyancy ratio above which the unicel-
lular regime can be maintained is equal to −0.50. Below this
value, only the bicellular natural flow pattern was found to exist.
The transition between these two flow structures is exemplified
in Fig. 4. For ϕ = −0.30 the flow is unicellular and the circu-
lation anticlockwise, as illustrated in Fig. 4(a). As the value of
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(c)

Fig. 3. (Continued).
Fig. 4. Streamlines, isotherms and concentration lines illustrating the transition
from unicellular to bicellular flow structures for BT = 0.4, δT = 0 and (a) ϕ =
−0.30, (b) ϕ = −0.50 and (c) ϕ = −0.53.

ϕ is decreased up to ϕ = −0.50 Fig. 4(b) indicates the occur-
rence of a small eddy, located near the right-hand side wall,
and rotating clockwise. Upon decreasing ϕ only from −0.50
to −0.53, Fig. 4(c) shows the occurrence of a bicellular natu-
ral flow circulation. The two symmetrical small counterrotating
eddies, located near the upper corners of the cavity, result from
the fact that the fluid is almost stagnant in that area, as it can be
observed from the isotherms and concentration lines. The third
branch reported in Fig. 3(a) corresponds to the bicellular anti-
natural convection mode. Upon decreasing ϕ below zero it is
found that this type of solution is possible down to ϕ = −0.17
where the solution bifurcates towards the upper (lower) anti-
clockwise (clockwise) unicellular branch. The evolution of the
flow structure during this transition is depicted in Fig. 5 for dif-
ferent time t . Thus, starting with a bicellular antinatural flow
pattern at time t = 0, Fig. 5(a), the formation of a small anti-
clockwise cell occurs at time t = 5.8, in the vicinity of the left
lower corner of the cavity, Fig. 5(b). As time increases, the in-
tensity and strength of this small cell become stronger and even-
tually merge with the left hand side anticlockwise cell. To ac-
commodate the newly formed large cell, the size and strength of
the original clockwise cell is considerably reduced as depicted
in Fig. 5(c). Finally, this mechanism leads to the formation of
a single anticlockwise cell structure as shown in Fig. 5(d) for
t = 8.5. Loss of stability of the bicellular antinatural convec-
tion mode to decreasing buoyancy ratio ϕ is thus by exchange
of stability to the unicellular stable case. In fact, as discussed
in the past by Sen et al. [25], antinatural flows are stable only
for a restricted of the governing parameters. It is noted that the
transition from the bicellular antinatural flow configuration to
the unicellular structure results from the initial conditions im-
poses. Thus, upon using the rest state as initial conditions, the
numerical results (not presented here) indicate the occurrence
of a single steady state cell structure. A Hopf’s bifurcation was
also observed to occur for sufficiently large values of ϕ for the
bicellular natural flow structure branch Fig. 3(a). The intensity
of the resulting oscillating flow depends not only of the value
of buoyancy ratio ϕ but also on that of the normalized poros-
ity of the porous medium ε. Thus as illustrated in Fig. 6(a) at
ϕ � 1.43 and ε = 1, the flow starts to be periodically oscillat-
ing. However, as the value of ε is made smaller the strength of
convection is considerably reduced such that the flow becomes
steady when ε = 0.6. Upon increasing ϕ Figs. 6(b) and 6(c)
show that, for ε = 1, the flow becomes progressively chaotic.

The numerical results presented in Fig. 3(a), for the case
Le = 10, were obtained for Le = 5 in order to investigate the
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(a)

(b)

Fig. 5. Selected streamlines, isotherms and concentration lines obtained for
BT = 0.4, δT = 0, ϕ = −0.18 and for (a) t = 2, (b) t = 5.8, (c) t = 6.4 and
(d) t = 8.5.

influence of this parameter on the present problem. The result-
ing curves, Fig. 7, indicate that both results are qualitatively
similar. However, the bifurcation of the bicellular antinatural
branch, for ϕ > 0, is observed to be quite different. Thus, in
Fig. 3(a), at ϕ = 0.18 the bicellular antinatural branch bifur-
cates towards the upper unicellular flow pattern. However, when
Le = 5, Fig. 7 indicates that a steady antinatural bicellular so-
lution is possible up to ϕ = 0.15 above which the flow pattern
is found to be oscillating periodically in time. This unsteady
regime is maintained up to ϕ = 0.45 where a transition towards
the bicellular natural convective flow (and not the unicellular)
occurs.

Fig. 8(a) shows the effect of ϕ on the maximum and mini-
mum streamfunction Ψmax and Ψmin, respectively, in the case of
(a)

(b)

(c)

Fig. 6. The history of flow intensity |Ψext| for (a) ϕ = 1.44, (b) ϕ = 1.47 and
(c) ϕ = 1.55.

a positive eccentricity of the heated element (δT = 0.15). Here
also, all the curves presented in the graph were started with the
results presented in Figs. 2(b), 2(e) and 2(f), for ϕ = 0. Upon
increasing ϕ from 0 to 1.36, and decreasing ϕ from 0 to −1.5,
step by step using the previous result as initial conditions, the
resulting solutions follow the hysteresis loops indicated by ar-
rows. The upper curve corresponds to a unicellular natural
counterclockwise circulation. Upon decreasing the value of ϕ

it is observed that, as expected, the strength of convection is
considerably reduced since the stabilizing influence of the so-
lutal gradients is enhanced. Thus, as indicated by Figs. 8(b)
and 8(c) the rest state (Nu → 1, Sh → 1) is almost reached for
ϕ � −0.96. On the other hand the flow intensity and heat and
mass transfer are promoted upon increasing ϕ above zero. This
follows from the fact that for ϕ > 0 both the thermal and solutal
gradients are destabilizing. The unicellular natural circulation
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Fig. 7. Effect of buoyancy ratio ϕ on Ψext for BT = 0.4, δT = 0 and Le = 5; P: 1 cell, 1: 2 natural cells, !: 2 antinatural cells.
can be maintained up to ϕ � 0.44 where the flow bifurcates to-
ward the bicellular natural branch. Finally, the lower branch in
Fig. 8(a) corresponds to the unicellular clockwise antinatural
branch. The range of extend of this flow structure is relatively
small −0.25 � ϕ � 0.47 since the solution bifurcates toward
the bicellular natural branch for other values of ϕ. Upon de-
creasing the value of ϕ below zero it is found that the bicellular
antinatural flow can be maintained down to ϕ = −0.26 where
the solution bifurcates toward the unicellular natural flow. Upon
increasing the value of ϕ above zero the occurrence of a small
clockwise eddy in the lower left corner of the cavity was ob-
served at ϕ = 0.85. Above the value ϕ = 1.36 the numerical
results indicate the existence of an oscillatory flow.

Figs. 9(a)–(d) illustrate the effect of the dimensionless length
of heat source BT on |Ψext|. This problem has been investi-
gated in the past (see for instance Mamou and Vasseur [10])
for the particular case BT = 1, i.e. when the cavity is fully
heated and salted from bottom. This situation corresponds to
a classical Bénard situation for which it is well known that
convection is possible only above a critical Rayleigh num-
ber RT C . For ϕ > 0, i.e. when both the thermal and solutal
gradients are destabilizing it was demonstrated by Nield [4],
on the basis of the linear stability theory, that the supercritical
Rayleigh number for the onset of unicellular motion is given
by Rasup

T C = 4π2/(1 + ϕLe). Thus, Rasup
T C = 7.89 when ϕ = 0.4

and Rasup
T C = 6.58 when ϕ = 0.5 such that unicellular convec-

tion is possible in Figs. 9(a) and 9(b) when BT = 1, since the
numerical results were obtained for a Rayleigh RT = 200, i.e.
well above the critical values for the onset of motion. Upon de-
creasing the value of BT and using the last numerical solution
as initial conditions the resulting curve, obtained for ϕ = 0.4,
is depicted in Fig. 9(a). Naturally, the intensity of |Ψext| is
found to decrease with BT . For BT = 1 and appropriate ini-
tial conditions the two cells structure is also possible, the sense
of rotation of the two counterrotating eddies being induced by
the initial conditions. Upon decreasing the value of BT , two
branches are obtained. The upper one corresponds to the bi-
cellular natural flow for which the fluid is ascendant above the
heated element. The other one, corresponding to the antinatural
bicellular flow pattern, can be maintained down to BT = 0.45,
where the flow bifurcates toward the upper unicellular branch.
Upon increasing ϕ from 0.4 to 0.5 yields the bifurcation curves
presented in Fig. 9(b). It is noted that the upper unicellular flow
structure is possible only down to BT = 0.95, below which the
flow pattern is found to be oscillating. The results obtained for
BT = 0.925 are depicted in Fig. 10, in terms of Ψext versus
time t , and the flow is observed to be periodically oscillating.
Thus at t = 29.60 Fig. 10(a) shows that the flow pattern con-
sists in a large counterclockwise cell and two small clockwise
eddies located at the top right corner and bottom left corner. At
time t = 29.77 the two small eddies have increased their size
such that at t = 30.04 they have almost merged to occupy a
large part of the cavity (Fig. 10(b)). This results in the forma-
tion of two counterclockwise cells in the upper left corner and
lower right corner of the cavity as depicted in Fig. 10(c). At time
t = 30.74 Fig. 10(d) shows that these two eddies have merged
again to form a large counterclockwise cell. The whole process
is repeated during each time period (τ = 2.60). At BT = 0.75,
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(a)

(b)

Fig. 8. Effect of buoyancy ratio ϕ on (a) Ψext, (b) Nu, (c) Sh, for BT = 0.4, δT = 0.15; P: 1 natural cell, Q: 1 antinatural cell, 1: 2 natural cells, !: 2 antinatural
cells.
Fig. 9(b) indicates that the unsteady flow regime bifurcates to-
ward the bicellular natural flow structure. On the other hand,
the antinatural bicellular flow structure can be maintained down
to BT = 0.475, before bifurcating toward the bicellular natural
branch. For ϕ < 0, i.e. when the thermal gradient are destabi-
lizing while the solutal one stabilizing, the onset of motion oc-
curs through a subcritical Rayleigh number [10]. For ϕ = −0.4,
Fig. 9(c) shows that the solution is qualitatively similar to the
results obtained in Fig. 9(a), for ϕ = 0.4. However, it is ob-
served from Fig. 9(d) that for ϕ = −0.5 a symmetrical one
mode cell solution does not exist. However, as it will be dis-
cussed at the end of this section a unicellular nonsymmetric
flow pattern is possible.

Fig. 11(a) illustrates the effect of ϕ on Ψext for the case of
a cavity fully heated from bottom (BT = 1). Starting with ap-
propriate initial conditions a unicellular flow is obtained, for
ϕ = −0.4, as depicted in the graph. Upon decreasing the value
of ϕ it is observed that this flow configuration is maintained
down to ϕ = −0.44 where the solution bifurcates toward a new
configuration where the flow decreases in intensity and loses its
spatial symmetry. As reported in Fig. 11(a), the cell is found
to be shifted to the right while an almost quiescent flow ex-
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(c)

Fig. 8. (Continued).

(a) (b)

(c) (d)

Fig. 9. Effect of dimensionless length of heat source BT on Ψext for δT = 0 (a) ϕ = 0.4, (b) ϕ = 0.5, (c) ϕ = −0.4, (d) ϕ = −0.5; P: 1 natural cell, 1: 2 natural
cells, !: 2 antinatural cells.
ists in the left part of the container. This branch can be main-
tained down to ϕ = −0.51 where the rest state prevails as the
value of ϕ is further decreased. The effect of the dimension-
less length of the heated element BT on Ψext is depicted in
Fig. 11(b). In addition of the natural and antinatural bicellu-
lar flow structures discussed in Fig. 9(d) the unicellular flow
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(a)

(b)

Fig. 10. The history of flow intensity Ψext for ϕ = 0.5, BT = 0.925 and δT = 0;
(a) t = 29.60, (b) t = 29.77, (c) t = 30.04, and (d) t = 30.74.

regime reported in Fig. 11(a) for ϕ = −0.5 is also possible.
Thus starting with this solution, as initial conditions, for BT = 1
yields the asymmetric flow pattern discussed above. Upon de-
creasing the value of BT this solution is maintained down to
BT = 0.88 for which the rest state is obtained. However, as the
value of BT is further decreased the appearance of two small
eddies, in the bottom corners of the cavity is observed. The size
and the intensity of these cells increase progressively, as the
value of BT is reduced. At BT = 0.55 the flow pattern bifur-
cates to a symmetrical bicellular configuration. The intensity of
the flow circulation decreased as the value of BT is further re-
duced.

The existence of tricellular flows in square enclosure has
been reported in the past by many authors (see for instance
Mamou et al. [24]). In the present problem, upon starting the
numerical procedure with appropriate boundary condition, it
(a)

(b)

Fig. 11. Flow intensity Ψext as a function of (a) ϕ for BT = 1 and (b) BT for
ϕ = −0.5; P: 1 natural cell, 1: 2 natural cells, E: 1 unsymmetrical cell, �: rest
state.

was found that such flow structures could be maintained for a
given range of the governing parameters. Fig. 12(a) illustrates
the effect of ϕ on |Ψext| for the case of a cavity fully heated
from the bottom (BT = 1). Upon decreasing the value of ϕ the
results indicate that this configuration is maintained down to
ϕ = −0.17 where the flow bifurcates toward a bicellular natural
circulation. The effect of the dimensionless length of the heated
element on the tricellular pattern is exemplified in Fig. 12(b). It
is observed that this flow configuration can be sustained down
to BT = 0.65, below which the bicellular flow configuration is
recovered.
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(a)

(b)

Fig. 12. Flow intensity |Ψext| as a function of (a) ϕ for BT = 1 and (b) BT for
ϕ = −0.5; 1: 2 natural cells, �: 3 cells.

5. Conclusions

In the present investigation, the results of a numerical study
of double diffusive convection in a two-dimensional square
porous enclosure, salted and partially heated from below, are
presented. The existence of a multiplicity of steady state so-
lutions for the present numerical problem has been demon-
strated numerically through the use of appropriate initial per-
turbations. The main conclusions of the present analysis are as
follows

1◦ Centrally located heated element (δT = 0): it was found
that both unicellular and bicellular symmetrical circula-
tions are possible. When a single cell is involved the flow
circulation may be clockwise or counterclockwise, one be-
ing the mirror image of the other. This flow pattern can be
reached only through appropriate initial conditions. When
two cells are involved two different solutions, termed natu-
ral and antinatural, are possible. The first one, correspond-
ing to the case where the fluid motion above the heated
element is upward, can be obtained starting from the rest
condition (Ψ = 0). The second one, for which the fluid mo-
tion above the heat source is downward, can be obtained
only by using appropriate initial conditions. The natural so-
lution corresponds to the maximum flow intensity and heat
and mass transfers. For a given set of the governing pa-
rameters it has been demonstrated that up to three different
solutions, corresponding to the above flow structures, are
possible. The range of existence of these solutions depends
strongly upon the governing parameters considered. Also,
in the present study, the existence of tricellular flows has
been observed for a given range of the governing parame-
ters.

2◦ Eccentrically located heated element (δT > 0): for this sit-
uation the unicellular anticlockwise (clockwise) circula-
tion corresponds to a natural (antinatural) flow, this latter
being up (down) over the heated element. Also, the nu-
merical results indicate the existence of a bicellular flow
structure, the flow above the heated element being up-
ward. Thus for this situation, up to three different solutions
are also possible for a given set of the governing parame-
ters.

In addition to the above flow configurations, various phe-
nomena have been observed such as oscillatory periodic and
aperiodic flow structures. Also, the existence of nonsymmetric
unicellular flows, has been demonstrated.

References

[1] S. Ostrach, Natural convection with combined driving forces, Phys. Chem.
Hydrodyn. 1 (1980) 233–247.

[2] R. Viskanta, T.L. Bergman, F.P. Incropera, Double diffusive natural con-
vection, in: Natural Convection Fundamentals and Applications, Hemi-
sphere, 1985, pp. 1075–1099.

[3] A. Nield, A. Bejan, Convection in Porous Media, second edition, Springer,
1999.

[4] D.A. Nield, Onset of thermohaline convection in a porous medium, Water
Resources Res. 4 (1968) 553–560.

[5] J.W. Taunton, E.N. Lightfoot, T. Green, Thermohaline instability and salt
fingers in a porous medium, Phys. Fluids 15 (1972) 748–753.

[6] N. Rudraiah, P.K. Srimani, R. Friedrich, Finite amplitude convection in a
two-component fluid saturated porous layer, Int. J. Heat Mass Transfer 25
(1981) 715–722.

[7] D. Poulikakos, Double-diffusive convection in horizontal sparsely packed
porous layer, Int. J. Heat Mass Transfer 13 (1986) 587–598.

[8] M.E. Taslim, U. Narusaw, Binary fluid composition and double diffusive
convection in a porous medium, J. Heat Transfer 108 (1986) 221–224.

[9] V. Trevisan, A. Bejan, Mass and heat transfer by high Rayleigh num-
ber convection in a porous medium heated from below, Int. J. Heat Mass
Transfer 30 (1987) 2341–2356.

[10] M. Mamou, P. Vasseur, Thermosolutal bifurcation phenomena in porous
enclosures subject to vertical temperature and concentration gradients,
J. Fluid Mech. 395 (1999) 61–87.



534 Z. Alloui et al. / International Journal of Thermal Sciences 48 (2009) 521–534
[11] O. Sovran, M. Charrier-Mojtabi, A. Motjabi, Naissance de la convection
thermo-solutale en couche poreuse infinie avec effet Soret, Mécanique des
fluides 329 (2001) 287–293.

[12] A. Bahloul, N. Boutana, P. Vasseur, Double-diffusive and Soret-induced
convection in a shallow horizontal porous layer, J. Fluid Mech. 491 (2003)
325–352.

[13] J.W. Elder, Steady free convection in a porous medium heated from below,
J. Fluid Mech. 47 (1967) 29–48.

[14] J.W. Elder, Transient convection in a porous medium, J. Fluid Mech. 47
(1967) 609–623.

[15] G. El-Khatib, V. Prasad, Effects of stratification on thermal convection in
horizontal porous layer with localized heating from below, J. Heat Trans-
fer 109 (1987) 683–687.

[16] L. Robillard, C. H Wang, P. Vasseur, Multiple steady states in confined
porous medium with localized heating from below, Numer. Heat Trans-
fer 13 (1988) 91–110.

[17] M. Bourich, M. Hasnaoui, A. Amahmid, Double-diffusive natural convec-
tion in a porous enclosure partially heated from below and differentially
salted, Int. J. Heat Fluid Flow 25 (2004) 1034–1046.

[18] D. Liu, F. Y Zhao, G.F. Tang, Thermosolutal convection in saturated
porous enclosure with concentrated energy and solute sources, Energy
Conversion & Management 49 (2008) 16–31.
[19] F.Y. Zhao, D. Liu, G.F. Tang, Natural convection in a porous enclosure
with partial heating and salting element, Int. J. Thermal Sci. 47 (2008)
569–583.

[20] F.Y. Zhao, D. Liu, G.F. Tang, Multiple steady flows in confined gaseous
double diffusion with discrete thermosolutale sources, Phys. Fluids 19
(2007) 2889–2904.

[21] F.Y. Zhao, D. Liu, G.F. Tang, Free convection from one thermal and solute
source in a confined porous medium, Transport Porous Media 70 (2007)
407–425.

[22] S.R. De Groot, P. Mazur, Non Equilibrium Thermodynamics, North-
Holland, Amsterdam, 1962, Wiley, New York.

[23] S. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Wash-
ington, DC, 1980.

[24] M. Mamou, P. Vasseur, M. Hasnaoui, On numerical stability analysis of
double-diffusive convection in confined enclosures, J. Fluid Mech. 433
(2001) 209–250.

[25] M. Sen, P. Vasseur, L. Robillard, Multiple steady states for unicellular nat-
ural convection in an inclined porous layer, Int. J. Heat Mass Transfer 30
(1987) 2097–2113.

[26] B. Goyeau, J.P. Songbe, D. Gobin, Numerical study of double-diffusive
natural convection in porous cavity using the Darcy–Brinkman formula-
tion, Int. J. Heat Mass Transfer 39 (1996) 1363–1378.


	Multiple steady states in a porous enclosure partially heated  and fully salted from below
	Introduction
	Mathematical formulation
	Numerical solution
	Results and discussion
	Conclusions
	References


